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1 Team Round

Problem 1. A six-digit natural number is “sort-of-decreasing” if its first three digits are in strictly decreasing order
and its last three digits are in strictly decreasing order. For example, 821950 and 631631 are sort-of-decreasing
but 853791 and 911411 are not. Compute the number of sort-of-decreasing six-digit natural numbers.

Problem 2. For each positive integer N , let P (N) denote the product of the digits of N . For example, P (8) = 8,
P (451) = 20, and P (2023) = 0. Compute the least positive integer n such that P (n+ 23) = P (n) + 23.

Problem 3. Compute the least integer value of the function

f(x) =
x4 − 6x3 + 2x2 − 6x+ 2

x2 + 1

whose domain is the set of all real numbers.

Problem 4. Suppose that noncongruent triangles ABC and XY Z are given such that AB = XY = 10, BC =
Y Z = 9, and m∠CAB = m∠ZXY = 30◦. Compute [ABC] + [XY Z].

Problem 5. The mean, median, and unique mode of a list of positive integers are three consecutive integers in
some order. Compute the least possible sum of the integers in the original list.

Problem 6. David builds a circular table; he then carves one or more positive integers into the table at points
equally spaced around its circumference. He considers two tables to be the same if one can be rotated so that
it has the same numbers in the same positions as the other. For example, a table with the numbers 8, 4, 5 (in
clockwise order) is considered the same as a table with the numbers 4, 5, 8 (in clockwise order), but both tables
are different from a table with the numbers 8, 5, 4 (in clockwise order). Given that the numbers he carves sum
to 17, compute the number of different tables he can make.

Problem 7. In quadrilateral ABCD, m∠B +m∠D = 270◦. The circumcircle of △ABD intersects CD at point
E, distinct from D. Given that BC = 4, CE = 5, and DE = 7, compute the diameter of the circumcircle of
△ABD.

Problem 8. Suppose that Xena traces a path along the segments in the figure shown, starting and ending at
point A. The path passes through each of the eleven vertices besides A exactly once, and only visits A at the
beginning and end of the path. Compute the number of possible paths Xena could trace.

A

Problem 9. Let i =
√
−1. The complex number z = −142 + 333

√
5i can be expressed as a product of two complex

numbers in multiple different ways, two of which are
(
57− 8

√
5i
)(
−6 + 5

√
5i
)
and

(
24 +

√
5i
)(
−3 + 14

√
5i
)
.

Given that z = −142 + 333
√
5i can be written as

(
a+ b

√
5i
)(
c+ d

√
5i
)
, where a, b, c, and d are positive

integers, compute the lesser of a+ b and c+ d.

Problem 10. Parallelogram ABCD is rotated about A in the plane, resulting in AB′C ′D′, with D on AB′.
Suppose that [B′CD] = [ABD′] = [BCC ′]. Compute tan∠ABD.
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2 Team Round Answers

Answer 1. 14400

Answer 2. 34

Answer 3. −7

Answer 4. 25
√
3

Answer 5. 12

Answer 6. 7711

Answer 7.
√
130

Answer 8. 16

Answer 9. 17

Answer 10.
√
2− 1
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3 Team Round Solutions

Problem 1. A six-digit natural number is “sort-of-decreasing” if its first three digits are in strictly decreasing order
and its last three digits are in strictly decreasing order. For example, 821950 and 631631 are sort-of-decreasing
but 853791 and 911411 are not. Compute the number of sort-of-decreasing six-digit natural numbers.

Solution 1. If three distinct digits are chosen from the set of digits {0, 1, 2, . . . , 9}, then there is exactly one way
to arrange them in decreasing order. There are

(
10
3

)
= 120 ways to choose the first three digits and 120 ways

to choose the last three digits. Thus the answer is 120 · 120 = 14400.

Problem 2. For each positive integer N , let P (N) denote the product of the digits of N . For example, P (8) = 8,
P (451) = 20, and P (2023) = 0. Compute the least positive integer n such that P (n+ 23) = P (n) + 23.

Solution 2. One can verify that no single-digit positive integer n satisfies the conditions of the problem.

If n has two digits, then n+ 23 cannot be a three-digit number; this can be verified by checking the numbers
n ≥ 88, because if n < 88, then one of the digits of n+23 is 0. Therefore both n and n+23 must be two-digit
numbers, so the only possible carry for n+ 23 will occur in the tens place. If there is a carry for n+ 23, then
n = a 8 or n = a 9, while n + 23 = (a+ 3) 1 or n + 23 = (a+ 3) 2, respectively (the case n = a 7 is omitted

because then P (n+ 23) = 0). In either case, P (n+ 23) < P (n) because a ≥ 1. Otherwise, assume n = a b and
n+ 23 = (a+ 2) (b+ 3) is a solution to the given equation, which implies

23 = P (n+ 23)− P (n) = (a+ 2)(b+ 3)− ab = 3a+ 2b+ 6.

This means 3a+ 2b = 17, which has solutions (a, b) = (5, 1), (3, 4) as a, b are digits and b < 7. The two-digit
solutions are n = 34 or n = 51; thus the least n such that P (n+ 23) = P (n) + 23 is n = 34.

Note: The following shows how to determine all solutions to the given equation. The reader may find this an
interesting extension of the conditions of the problem.

Suppose that n = a1 a2 . . . ak, which implies P (n) = a1a2 · · · ak. If n and n+ 23 differ in any digit preceding

the hundreds place (where leading digits of 0 are allowed if necessary to compare these digits), then one of the
digits of n+23 must be 0, which means P (n+23) = 0, and thus n would not be a solution to the given equation.

Otherwise, suppose k > 3, and let n + 23 = a1 a2 . . . ak−3 bk−2 bk−1 bk, where bk−2, bk−1, bk may differ from

ak−2, ak−1, ak, respectively. The given equation implies

23 = P (n+ 23)− P (n) = (bk−2bk−1bk − ak−2ak−1ak)

k−3∏
j=1

aj .

Because the product is a divisor of 23 and 23 is prime, it follows that the product is equal to 1 and therefore,
aj = 1 for all 1 ≤ j < k − 2. This means that the number n = ak−2 ak−1 ak with n+ 23 = bk−2 bk−1 bk would

be a strictly smaller solution to the given equation. Therefore it suffices to find all solutions for n with at most
three digits.

All solutions to P (n + 23) = P (n) + 23 will be of the form n = 34, n = 51, n = 11 . . . 134, or n = 11 . . . 151.
The least such solution is n = 34.

Problem 3. Compute the least integer value of the function

f(x) =
x4 − 6x3 + 2x2 − 6x+ 2

x2 + 1

whose domain is the set of all real numbers.
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Solution 3. Use polynomial long division to rewrite f(x) as

f(x) = x2 − 6x+ 1 +
1

x2 + 1
.

The quadratic function x2 − 6x+ 1 = (x− 3)2 − 8 has a minimum of −8, achieved at x = 3. The “remainder
term” 1

x2+1 is always positive. Thus f(x) > −8 for all x, so any integer value of f(x) must be at least −7.

When x = 3, the remainder term is less than 1, so f(3) is less than −7. But f(4) = − 34
5 > −7, so there

must be some value of x between 3 and 4 for which f(x) = −7, so the least integer value of f(x) is −7. The
reader may note that f(x) = −7 when x ≈ 2.097 and x ≈ 3.970.

Problem 4. Suppose that noncongruent triangles ABC and XY Z are given such that AB = XY = 10, BC =
Y Z = 9, and m∠CAB = m∠ZXY = 30◦. Compute [ABC] + [XY Z].

Solution 4. Because triangles ABC and XY Z are noncongruent yet have two adjacent sides and an angle in
common, the two triangles are the two possibilities in the ambiguous case of the Law of Sines. Without loss of
generality, let triangle ABC have obtuse angle C and triangle XY Z have acute angle Z so that m∠C+m∠Z =
180◦. Place triangle ABC so that B and Y coincide, and C and Z coincide. Because m∠C and m∠Z add
up to 180◦, it follows that points X, Z, and A all lie on the same line. The two triangles together then form
△ABX, where m∠BAX = m∠BXA = 30◦ and BX = AB = 10. Therefore the sum of the areas of the two

triangles is equal to the area of triangle ABX, which is 1
2 · 10 · 10 · sin(120

◦) = 5·10·
√
3

2 = 25
√
3.

A

B = Y

XC = Z

10 10
9

Figure not drawn to scale.

Alternate Solution: As explained above, let △ABC have obtuse angle C and △XY Z have acute angle Z.
By the Law of Sines, sin(∠C) = sin(∠Z) = 5

9 . This implies m∠XY Z = 5π
6 − arcsin

(
5
9

)
and m∠ABC =

arcsin( 59 )−
π
6 . The areas of the triangles are [XY Z] = 1

2 · 10 · 9 · sin
(
5π
6 − arcsin( 59 )

)
and [ABC] = 1

2 · 10 · 9 ·
sin

(
arcsin( 59 )−

π
6

)
. By the angle subtraction rule, it follows that

sin

Å
5π

6
− arcsin

Å
5

9

ãã
= sin

Å
5π

6

ã
cos

Å
arcsin

Å
5

9

ãã
− cos

Å
5π

6

ã
sin

Å
arcsin

Å
5

9

ãã
and

sin

Å
arcsin

Å
5

9

ã
− π

6

ã
= sin

Å
arcsin

Å
5

9

ãã
cos

(π
6

)
− cos

Å
arcsin

Å
5

9

ãã
sin

(π
6

)
.

The sum of the two sines is sin
(
arcsin( 59 )

)(
cos(π6 ) − cos( 5π6 )

)
= 5

9 ·
√
3 because sin(π6 ) = sin( 5π6 ). Finally, the

sum of the areas of the two triangles is 1
2 · 10 · 9 ·

5
9 ·
√
3 = 25

√
3.

Problem 5. The mean, median, and unique mode of a list of positive integers are three consecutive integers in
some order. Compute the least possible sum of the integers in the original list.

Solution 5. One possible list is 1, 1, 3, 7, which has mode 1, median 2, and mean 3. The sum is 1+1+3+7 = 12.
A list with fewer than four numbers cannot produce a median and unique mode that are distinct from each
other. To see this, first note that a list with one number has the same median and mode. In a list with two
numbers, the mode is not unique if the numbers are different, and if the numbers are the same, the median
and mode are equal. In a list of three numbers with a unique mode, the mode must occur twice. Hence the
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mode is equal to the middle number of the three, which is the median. Thus a list with a median and unique
mode that are different from each other must contain at least four numbers.

Now suppose that a list satisfying the given conditions sums to less than 12. The mean must be greater
than 1, and because the list contains at least four numbers, the mean must be exactly 2. The median must also
be greater than 1, and if the mode is 4, then the sum must be greater than 12. Thus it remains to determine
if a mean of 2 with mode 1 and median 3 can be achieved with a list of four or five positive integers. However,
having two 1s in the list and a median of 3 forces the remaining numbers in each case to have a sum too large
for a mean of 2. The least possible sum is therefore 12.

Problem 6. David builds a circular table; he then carves one or more positive integers into the table at points
equally spaced around its circumference. He considers two tables to be the same if one can be rotated so that
it has the same numbers in the same positions as the other. For example, a table with the numbers 8, 4, 5 (in
clockwise order) is considered the same as a table with the numbers 4, 5, 8 (in clockwise order), but both tables
are different from a table with the numbers 8, 5, 4 (in clockwise order). Given that the numbers he carves sum
to 17, compute the number of different tables he can make.

Solution 6. The problem calls for the number of ordered partitions of 17, where two partitions are considered the
same if they are cyclic permutations of each other. Because 17 is prime, each ordered partition of 17 into n
parts will be a cyclic permutation of exactly n such partitions (including itself), unless n = 17. (If n = 17,
then all the numbers are 1s, and there is exactly one table David can make.) By the sticks and stones method,
the number of ordered partitions of 17 into n nonzero parts is

(
16

n−1

)
, and this overcounts the number of tables

by a factor of n, except when n = 17. Thus the number of possible tables is

1 +

16∑
n=1

Ç
16

n− 1

å
· 1
n
= 1 +

16∑
n=1

Ç
17

n

å
· 1
17

= 1 +
217 − 2

17
= 7711.

Problem 7. In quadrilateral ABCD, m∠B +m∠D = 270◦. The circumcircle of △ABD intersects CD at point
E, distinct from D. Given that BC = 4, CE = 5, and DE = 7, compute the diameter of the circumcircle of
△ABD.

Solution 7. Note that m∠A + m∠C = 90◦ in quadrilateral ABCD. Because quadrilateral ABED is cyclic, it
follows that m∠ADE+m∠ABE = 180◦. Moreover, because m∠ABE+m∠EBC+m∠ADE = 270◦, it follows
that ∠EBC is a right angle. Thus BE =

√
CE2 −BC2 =

√
52 − 42 = 3. Let m∠BEC = θ; then cos θ = 3

5
and sin θ = 4

5 .

A

B

CD E

Applying the Law of Cosines to △BED yields

BD2 = 32 + 72 − 2 · 3 · 7 cos(180◦ − θ) = 32 + 72 + 2 · 3 · 7 cos θ =
416

5
.

Thus BD = 4
√
26√
5
. Let R be the circumradius of △ABD and △BED. Then the requested diameter is 2R, and
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applying the Law of Sines to △BED yields

2R =
BD

sin(180◦ − θ)
=

BD

sin θ
=

4
√
26√
5
· 5
4
=

√
130 .

Alternate Solution: Proceed as above to conclude that ∠EBC is a right angle and BE = 3. Extend BC past
B to intersect the circle a second time at F . By Power of a Point from C, it follows that CE ·CD = CB ·CF ,
from which CF = 5·12

4 = 15, and BF = 11. Because ∠EBF is also a right angle, it follows that EF is a

diameter of the circle and that EF =
√
32 + 112 =

√
130.

Problem 8. Suppose that Xena traces a path along the segments in the figure shown, starting and ending at
point A. The path passes through each of the eleven vertices besides A exactly once, and only visits A at the
beginning and end of the path. Compute the number of possible paths Xena could trace.

A

Solution 8. Count the number of complete paths that pass through all vertices exactly once (such a path is called
a Hamiltonian path). The set of vertices can be split into two rings:

I = {A1, A2, . . . , A6} (i.e., the inner ring), O = {B1, B2, . . . , B6} (i.e., the outer ring).

where A1 = A. The two rings are connected by the edges E = {A1B1, A2B2, . . . , A6B6}. Each vertex in the
figure has exactly three edges joining it with the neighboring vertices. Also note that any closed loop must use
exactly two edges (out of three) for each vertex.

Further note that a loop must use at least one edge from E to move from one ring to the other. Consider two
cases: the loop uses all six edges from E, or it uses some but not all of them.

If all edges from E are used, there are two possible undirected loops. It is not possible to use both edges
A1A2 and B1B2, so either A1A2 or B1B2 will be used. This choice determines how the entire loop is con-
structed.

If not all edges from E are used, then there must be some i for which the loop uses the edge AiBi and
does not use Ai+1Bi+1 (where AjBj represents Aj−6Bj−6 if 7 ≤ j ≤ 12). Because Ai+1 is only connected to
three other vertices, the loop must use AiAi+1 and Ai+1Ai+2, and similarly must use BiBi+1 and Bi+1Bi+2.
This also precludes using Ai+2Bi+2, because doing so would close the loop before it visits all 12 vertices. There-
fore the loop must also use Ai+2Ai+3 and Bi+2Bi+3, which now precludes using Ai+3Bi+3. This continues to
force the structure of the loop until it closes by using Ai+5Bi+5 = Ai−1Bi−1. Hence the loop must use exactly
two edges from E, and they must be consecutive: Ai−1Bi−1 and AiBi. There are 6 ways to choose those two
consecutive edges, so there are 6 possible undirected loops in this case.

The forced path is a loop, and the only way the given conditions are satisfied if Ai+k = Ai−1 and Bi+k = Bi−1.
Hence the loop must use (precisely) two consecutive edges from E: Ai−1Bi−1 and AiBi. There are 6 ways to
choose two consecutive edges, so there are 6 possible undirected loops in this case.

Each undirected loop can be traced in two ways, and thus the number of ways for Xena to trace the path
is (6 + 2) · 2 = 16.
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Problem 9. Let i =
√
−1. The complex number z = −142 + 333

√
5i can be expressed as a product of two complex

numbers in multiple different ways, two of which are
(
57− 8

√
5i
)(
−6 + 5

√
5i
)
and

(
24 +

√
5i
)(
−3 + 14

√
5i
)
.

Given that z = −142 + 333
√
5i can be written as

(
a+ b

√
5i
)(
c+ d

√
5i
)
, where a, b, c, and d are positive

integers, compute the lesser of a+ b and c+ d.

Solution 9. Multiply each of the given parenthesized expressions by its complex conjugate to obtain

1422 + 5 · 3332 =
(
572 + 5 · 82

)(
62 + 5 · 52

)
=

(
242 + 5 · 12

)(
32 + 5 · 142

)
=

(
a2 + 5b2

)(
c2 + 5d2

)
.

The expression on the second line is equal to 581·989 = 7·83·23·43 (one can perhaps factor 989 a little faster by
noting that 23 divides 62+5 ·52 = 7 ·23 but not 581, so it must divide 989). Thus a2+5b2 and c2+5d2 must be
a factor pair of this number. It is not possible to express 1, 7, 23, 43, or 83 in the form x2+5y2 for integers x, y.

Let N = a2 + 5b2, and without loss of generality, assume that 7 divides N . From the above analysis, N

must be 7 · 23, 7 · 43, or 7 · 83. By direct computation of checking all positive integers b less than
»

N
5 , the only

possibilities for (a, b) are:

• when N = 7 · 23, either (9, 4) or (6, 5);
• when N = 7 · 43, either (16, 3) or (11, 6); and
• when N = 7 · 83, either (24, 1) or (9, 10).

Next, observe that
−142 + 333

√
5i

a+ b
√
5i

=
(−142a+ 1665b) + (333a+ 142b)

√
5i

N

must equal c+ d
√
5i, so N must divide −142a+ 1665b and 333a+ 142b. But

• 7 does not divide 333 · 9 + 142 · 4 or 333 · 6 + 142 · 5;
• 43 does not divide 333 · 16 + 142 · 3; and
• 83 does not divide 333 · 9 + 142 · 10.

Thus the only candidates are (a, b) = (11, 6) and (a, b) = (24, 1). Note that (24, 1) yields the second factorization
given in the problem statement, which has a negative real part in one of its factors. Thus the only remaining
candidate for (a, b) is (11, 6), which yields (c, d) = (28, 15), thus the answer is 11 + 6 = 17.

Problem 10. Parallelogram ABCD is rotated about A in the plane, resulting in AB′C ′D′, with D on AB′.
Suppose that [B′CD] = [ABD′] = [BCC ′]. Compute tan∠ABD.

Solution 10. Let AB = x, BC = y, and m∠A = α.
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It then follows that [ABD′] = xy sin 2α
2 and [B′CD] = x(x−y) sinα

2 .

Because BC, AB′, and D′C ′ are all parallel, it follows that △BCC ′ and △BCD′ have the same height
with respect to base BC, and thus [BCC ′] = [BCD′]. Therefore [BCD′] = [ABD′], and it follows that trian-

gles BCD′ and ABD′ have the same height with respect to base BD′. Thus A and C are equidistant from
←−→
BD′.

This implies that the midpoint of AC lies on
←−→
BD′. But

←→
BD also passes through the midpoint of AC by

parallelogram properties, so it follows that D must lie on BD′. This implies that [ABD′] must also equal
y2 sinα

2 + xy sinα
2 = (xy+y2) sinα

2 .

This implies that x(x − y) sinα = xy sin 2α = (xy + y2) sinα, which implies x : y =
√
2 + 1 and sinα =

cosα =
√
2
2 . Finally, from right triangle D′AB with legs in the ratio 1 :

√
2 + 1, it follows that tan(∠ABD) =

tan(∠ABD′) =
√
2 − 1.

8 ARML encourages the reproduction of our contest problems for non-commercial, educational purposes.

Commercial usage of ARML problems without permission and posting entire contests or contest books are prohibited.



4 Power Round 2023: A Perfectly Cromulent Power Question

Instructions: The power question is worth 50 points; each part’s point value is given in brackets next to the part.
To receive full credit, the presentation must be legible, orderly, clear, and concise. If a problem says “list” or “com-
pute,” you need not justify your answer. If a problem says “determine,” “find,” or “show,” then you must show
your work or explain your reasoning to receive full credit, although such explanations do not have to be lengthy. If a
problem says “justify” or “prove,” then you must prove your answer rigorously. Even if not proved, earlier numbered
items may be used in solutions to later numbered items, but not vice versa. Pages submitted for credit should be
NUMBERED IN CONSECUTIVE ORDER AT THE TOP OF EACH PAGE in what your team considers to be
proper sequential order. PLEASE WRITE ON ONLY ONE SIDE OF THE ANSWER PAPERS. Put the TEAM
NUMBER (not the team name) on the cover sheet used as the first page of the papers submitted. Do not identify
the team in any other way.

In a sequence of n consecutive positive integers, where n > 1, an element of the sequence is said to be cromulent
if it is relatively prime to all other numbers in the sequence. Every element of a sequence with n = 2 is cromulent
because any two consecutive integers are relatively prime to each other.

1. List a sequence of three consecutive positive integers with

a. exactly one cromulent element; [1 pt]

b. three cromulent elements. [1 pt]

2. List a sequence of four consecutive positive integers with

a. exactly one cromulent element; [1 pt]

b. two cromulent elements. [1 pt]

3. List a sequence of five consecutive positive integers with

a. exactly one cromulent element; [1 pt]

b. exactly two cromulent elements; [1 pt]

c. three cromulent elements. [1 pt]

4. Show that any two consecutive odd positive integers are relatively prime to each other. [2 pts]

5. a. Show that every sequence of three consecutive positive integers contains a cromulent element. [2 pts]

b. Show that every sequence of four consecutive positive integers contains a cromulent element. [2 pts]

c. Show that every sequence of five consecutive positive integers contains a cromulent element. [3 pts]

6. Find the maximum and minimum possible number of cromulent elements in a sequence of n consecutive positive
integers with

a. n = 6; [3 pts]

b. n = 7. [3 pts]

7. Prove that there is at least one cromulent element in every sequence of n consecutive positive integers with

a. n = 8; [4 pts]

b. n = 9. [4 pts]

8. a. Find two sequences of 17 consecutive positive integers with no cromulent elements. [6 pts]

b. Compute the least possible element of such a sequence of length 17. [2 pts]
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9. The goal of this problem is to prove the following claim:

Claim: For k ≥ 300, there is a sequence of k consecutive integers with no cromulent elements.

Let π(n) denote the number of primes less than or equal to n. You may use the following lemma without proof
in the problems that follow.

Lemma: For x ≥ 75, π(2x)− π(x) ≥ 2
⌊
log2(x)

⌋
+ 2.

One argument for proving the above claim begins as follows. Let m =
⌊
k
4

⌋
≥ 75, let p1, p2, . . . , pr denote the

primes in the set {1, 2, . . . ,m} (note that p1 = 2), and let pr+1, pr+2, . . . , ps denote the primes in the set
{m+ 1,m+ 2, . . . , 2m}.

a. Prove that if each of the k consecutive integers in the sequence is divisible by at least one of the primes
p1, p2, . . . , ps, then the sequence has no cromulent elements. [2 pts]

Let x be a solution to the system of congruences x ≡ 1 (mod 2) and x ≡ 0 (mod p2p3 · · · pr). Then the integers

x− 2m, x− 2m+ 2, . . . , x− 2, x, x+ 2, . . . , x+ 2m− 2, x+ 2m

form a sequence of 2m+ 1 consecutive odd integers of the form x± 2y, where y varies from 0 to m.

b. Prove that every number in the above sequence, except those in which y is a power of 2, is divisible by
one of the primes p2, . . . , pr. [2 pts]

Let t =
⌊
log2(m)

⌋
+ 1. Then the elements of the above list not yet accounted for are x± 2, x± 22, . . . , x± 2t.

c. Prove that there are at least 2t primes in the set {m+ 1,m+ 2, . . . , 2m}. [1 pt]

It therefore follows that s− r ≥ 2t, hence pr+2t ≤ ps.

d. Show that there exists an integer x such that

x ≡ 1 (mod 2),

x ≡ 0 (mod p2p3 · · · pr),

and for each u ∈ {1, . . . , t},

x+ 2u ≡ 0 (mod pr+u), and

x− 2u ≡ 0 (mod pr+t+u). [2 pts]

e. Let x be a solution to the system of congruences in part (d). Show that the sequence of 4m+3 consecutive
integers

x− 2m− 1, x− 2m, x− 2m+ 1, . . . , x− 1, x, x+ 1, . . . , x+ 2m+ 1

has no cromulent elements. [3 pts]

f. Show that for k ≥ 300, there is a sequence of k consecutive integers with no cromulent elements. [2 pts]
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5 Power Round Solutions

1. a. There are many examples of sequences of three consecutive positive integers with exactly one cromulent
element. One such sequence is 2, 3, 4. Note that 2 and 4 share the common factor of 2, while 3 is prime.
More generally, such a sequence will be of the form 2n, 2n+ 1, 2n+ 2 for some positive integer n.

b. There are many examples of sequences of three consecutive positive integers with three cromulent elements.
One such sequence is 1, 2, 3. More generally, such a sequence will be of the form 2n − 1, 2n, 2n + 1 for
some positive integer n.

2. a. There are many examples of sequences of four consecutive positive integers with exactly one cromulent
element. One such sequence is 3, 4, 5, 6. Note that 4 and 6 share the common factor of 2, and that 3
and 6 share the common factor of 3, while 5 is prime and thus cromulent.

b. There are many examples of sequences of four consecutive positive integers with two cromulent elements.
One such sequence is 2, 3, 4, 5. Note that 2 and 4 share the common factor of 2, while 3 and 5 are prime
and thus cromulent.

3. a. There are many examples of sequences of five consecutive positive integers with exactly one cromulent
element. One such sequence is 2, 3, 4, 5, 6. Note that 2, 4, and 6 share the common factor of 2, and that
3 and 6 share the common factor of 3, while 5 is prime and thus cromulent.

b. There are many examples of sequences of five consecutive positive integers with two cromulent elements.
One such sequence is 4, 5, 6, 7, 8. Note that 4, 6, and 8 share the common factor of 2, while 5 and 7 are
prime and thus cromulent.

c. There are many examples of sequences of five consecutive positive integers with three cromulent elements.
One such sequence is 1, 2, 3, 4, 5. Note that 2 and 4 share the common factor of 2, while 3 and 5 prime,
thus 1, 3, and 5 are cromulent.

4. Two consecutive odd integers differ by 2. Thus any common divisor of the two integers must also divide 2.
However, the only prime divisor of 2 is 2, and neither of the consecutive odd integers is a multiple of 2. Therefore
the consecutive odd integers are relatively prime to each other.

5. a. Consider the sequence a − 1, a, a + 1. Note that a is relatively prime to a − 1 and a + 1 because any
common divisor must divide their difference, and the differences are both 1. Thus a is a cromulent element
of the sequence.

b. Consider a sequence of four consecutive integers. Notice that two of these integers will be odd, and by
problem 4, these are relatively prime to each other. At most one of these two odd integers can be a
multiple of 3. Let a be an odd integer in the sequence that is not a multiple of 3. Then a is cromulent by
the following reasoning. Note that the difference between a and any other element of the sequence is at
most 3. Thus if a shared a common factor greater than 1 with some other element of the sequence, this
factor would have to be 2 or 3. But because a is odd and not a multiple of 3, it follows that a is cromulent.

c. Consider a sequence of five consecutive integers. Exactly one number in such a sequence will be a multiple
of 5, but that number could also be a multiple of 2 and hence share a common factor with at least one
other number in the sequence. There are several cases to consider, namely whether the sequence starts
with an even number or an odd number.

If the sequence starts with an even number, then the second and fourth numbers are both odd, and at least
one of them is not a multiple of 3 and hence is relatively prime to all other numbers in the sequence because
it is neither a multiple of 2 nor 3 and hence is at least 5 away from the nearest integer with a common factor.

If the sequence starts with an odd number, then it again contains an odd number that is not a multiple
of 3 and hence is relatively prime to all other numbers in the sequence. In fact, it contains two such
numbers if the first or last number is a multiple of 3, and if the middle number is a multiple of 3 then all
three odd elements are cromulent.

6. a. The minimum number is 1 and the maximum number is 2. One example of a sequence of length 6 with
1 cromulent element is 5, 6, 7, 8, 9, 10, where 7 is the cromulent element. To show that it is not possible
for a sequence of 6 consecutive elements to have 0 cromulent elements, consider two cases. If the sequence
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begins with an even number, that number is not cromulent, and one of the other five elements must be
cromulent by the argument in the solution to 5(c). A similar argument establishes that one element must
be cromulent if the sequence of 6 begins with an odd number (and thus ends in an even number).

One example of a sequence of length 6 with 2 cromulent elements is 1, 2, 3, 4, 5, 6, where 1 and 5 are
both cromulent.

To prove that a sequence of length 6 cannot have three cromulent elements, consider that the cromulent
elements would all have to be odd, and one of those three would be a multiple of 3. Because one of the
even elements must also be a multiple of 3, it is not possible for all three odd elements to be cromulent.

b. The minimum number is 1 and the maximum number is 3. One example of a sequence of length 7 with 1
cromulent element is 4, 5, 6, 7, 8, 9, 10, where 7 is the cromulent element. To show that it is not possible for
such a sequence to have zero cromulent elements, consider two cases. If the sequence begins with an even
number, then it contains 3 odd numbers. At most one of these is divisible by 3, and at most one is divisible
by 5, so one of the odd numbers must be divisible by neither 3 nor 5. This odd number differs by at most
6 from each other element of the sequence, so the only prime factors it can share with another element of
the sequence are 2, 3, and 5. Because it is divisible by none of these primes, it follows that the odd number
in question is cromulent. Similarly, if the sequence begins with an odd number, then it contains 4 odd
numbers; at most two of these are divisible by 3, and at most one is divisible by 5, so again, one odd num-
ber in the sequence must be divisible by neither 3 nor 5. By the same argument, this element is cromulent.

One example of a sequence of length 7 with 3 cromulent elements is 1, 2, 3, 4, 5, 6, 7, where 1, 5, and 7
are all cromulent.

To prove that a sequence of length 7 cannot have four cromulent elements, consider that the cromulent
elements would all have to be odd. At least one of these four odd elements must be a multiple of 3.
Because one of the even elements must also be a multiple of 3, it is thus not possible for all four odd
elements to be cromulent.

7. a. In any sequence of eight consecutive integers, four of them will be even and hence not cromulent. The
primes 3, 5, and 7 are the only numbers that could possibly divide more than one number in the sequence,
with 5 and 7 each dividing at most one of the four odd numbers. Note that for 7 to divide two numbers
in the sequence, they must be the first and last numbers because only those differ by 7. The prime 3 can
divide two odd numbers in the sequence, but only if they differ by 6, which means they must be either
the 1st and 7th or the 2nd and 8th numbers in the list. Therefore one of the two odd multiples of 3 would
also be the only candidate to be an odd multiple of 7 when there are two multiples of 7, and so at least
one of the four odd numbers must be cromulent.

b. In a sequence of nine consecutive integers, again the only primes to check are 2, 3, 5, and 7. If there are
five even numbers in the sequence, then at least one of the odd numbers is cromulent by similar reasoning
to the solution to 7(a). The difference is that in this case the multiples of 7 can be either the 1st and
8th or the 2nd and 9th numbers, while the odd multiples of 3 must be the 2nd and 8th numbers (because
the 1st number is even) and hence overlap with the multiples of 7 again. If instead there are four even
numbers in the sequence, then the 1st, 3rd, 5th, 7th, and 9th numbers are odd. Now 7 divides at most
one of these odd numbers, 5 divides at most one, and 3 divides at most two, leaving at least one odd
cromulent element.

8. a. For a sequence of length 17, the primes to check are 2, 3, 5, 7, 11, and 13. By making the first number
a multiple of 2, 3, 7, and 13, and the last number a multiple of 2, 5, and 11, such a sequence can be
2 · 3 · 7 · 13 · a, 5b, 2c, 3d, 2e, 11f , 2 · 3 · 5 · g, 7h, 2i, 3j, 2k, 5ℓ, 2 · 3 ·m, 13 · n, 2 · 7 · p, 3q, 2 · 5 · 11 · r for
positive integers a, b, c, . . . , r, so it contains no cromulent elements. Because the 2nd and 6th elements of
the above sequence are multiples of 5 and 11, respectively, it follows that the first element of the sequence
must be a multiple of 546 that is also 4 (mod 5) and 6 (mod 11), so 2184 works, as does 2184+30030s for
any positive integer s by the Chinese Remainder Theorem. Similarly, the first number could be a multiple
of 2, 5, and 11, and the last number a multiple of 2, 3, 7, and 13, which means such a sequence could start
with 27830 or 27830 + 30030t for any positive integer t.

b. From the argument in the solution to 8(a), the least possible element of such a sequence of length 17
is 2184.
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9. a. Let the sequence of k integers be a1, a2, . . . , ak, where an = a1 + (n − 1) for 1 ≤ n ≤ k. For any
aj ∈ {a1, a2, . . . , a2m}, suppose that aj is divisible by some p ∈ {p1, p2, . . . , ps}. Then aj+p = aj + p, so
aj+p is also divisible by p. Hence neither aj nor aj+p is cromulent because both numbers are divisible
by p (also note that j + p < 4m ≤ k, so aj+p is one of the k integers in the sequence). Thus none
of a1, a2, . . . , a2m are cromulent. Similarly, for any aj′ ∈ {a2m+1, a2m+2, . . . , ak}, suppose that aj′ is
divisible by some p′ ∈ {p1, p2, . . . , ps}. Then aj′−p′ = aj′ − p′ is also divisible by p′ (also note that
1 < j′ − p′ ≤ k− 2, so aj′−p′ is one of the k integers in the sequence). Thus none of a2m+1, a2m+2, . . . , ak
are cromulent, completing the proof.

b. Note that x ≡ 1 (mod 2) implies that x is odd. Because x ≡ 0 (mod p2p3 · · · pr), write x = qp2p3 · · · pr
for some odd integer q. Then x is divisible by all of the primes p2, . . . , pr. The desired result will first be
established for numbers of the form x+2y, with 1 ≤ y ≤ m. Because x is divisible by each of p2, . . . , pr, it
suffices to prove that y is divisible by one of p2, . . . , pr unless y is a power of 2. Note that because p2, . . . , pr
are all odd, if y is a power of 2 (including 20 = 1), then 2y cannot be divisible by any of p2, . . . , pr. On the
other hand, if y has an odd factor greater than 1, by the Fundamental Theorem of Arithmetic, y must be
divisible by at least one of p2, . . . , pr (note that p2 = 3 and pr ≤ m). Finally, because the desired result
holds for x+2y, with 1 ≤ y ≤ m, it also holds for x− 2y because x− 2y = (x+2y)− 4y, thus completing
the proof.

c. The definition of the π(·) function implies that the number of primes in the set {m+1,m+2, . . . , 2m} is
π(2m)− π(m). Because m ≥ 75, the lemma can be applied and implies that

π(2m)− π(m) ≥ 2
⌊
log2(m)

⌋
+ 2 = 2t,

hence the desired conclusion follows.

d. Note that the moduli of the given congruences:

2, p2p3 · · · pr, pr+u, pr+t+u (u ∈ {1, . . . , t})

are pairwise relatively prime. The Chinese Remainder Theorem can therefore be applied to the given
system, and implies that the given system of congruences has solutions for x, as desired.

e. Let x be a solution to the system from problem 9(d). Then each element of the subsequence of 2m + 2
elements

x− 2m− 1, x− 2m+ 1, . . . , x− 1, x+ 1, . . . , x+ 2m+ 1 (∗)

is even, hence no element of (∗) is cromulent. The remaining elements of the given sequence are

x− 2m, x− 2m+ 2, . . . , x− 2, x, x+ 2, . . . , x+ 2m− 2, x+ 2m, (†)

and are all odd. Note that (†) is precisely the sequence considered in problem 9(b). Let x′ = x± 2y be an
element of (†), where 0 ≤ y ≤ m. If y is not a power of 2, then the result of problem 9(b) implies that x′ is
divisible by one of p2, . . . , pr. On the other hand, if y = 2w for some integer 0 ≤ w ≤ t−1, then according to
the third congruence of problem 9(d), x+2y is divisible by pr+w+1, and according to the fourth congruence
of problem 9(d), x−2y is divisible by pr+t+w+1. Also note that because r+w+1 < r+t+w+1 ≤ r+2t ≤ s,
it follows that pr+w+1 and pr+t+w+1 are distinct primes among the s primes less than 2m. Hence the
result of problem 9(a) applies, and thus the given sequence has no cromulent elements.

f. Note that m =
⌊
k
4

⌋
implies that k ≤ 4m + 3. Now consider any sequence S of k consecutive integers,

taken from the sequence of 4m+ 3 consecutive integers

x− 2m− 1, x− 2m, x− 2m+ 1, . . . , x− 1, x, x+ 1, . . . , x+ 2m+ 1.

As proven in problem 9(e), each of these 4m + 3 integers is divisible by at least one of the s primes less
than or equal to 2m. When a shortened sequence of k consecutive integers is chosen from among the
original 4m+3 integers, it remains true that each of them is divisible by a prime less than or equal to 2m.
Therefore the result of problem 9(a) again implies that the shortened sequence has no cromulent element,
as desired.
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6 Individual Round

Problem 1. Let N = 888,888× 9,999,999. Compute the sum of the digits of N .

Problem 2. Five equilateral triangles are drawn in the plane so that no two sides of any of the triangles are
parallel. Compute the maximum number of points of intersection among all five triangles.

Problem 3. Let S be the set of four-digit positive integers for which the sum of the squares of their digits is 17.
For example, 2023 ∈ S because 22 + 02 + 22 + 32 = 17. Compute the median of S.

Problem 4. Let EUCLID be a hexagon inscribed in a circle of radius 5. Given that EU = UC = LI = ID = 6,
and CL = DE, compute CL.

Problem 5. The ARMLLexicon consists of 10 letters: {A,R,M ,L, e, x , i , c, o,n}. A palindrome is an ordered list
of letters that read the same backwards and forwards; for example, MALAM, n, oncecno, and MoM are palin-
dromes. Compute the number of 15-letter palindromes that can be spelled using letters in the ARMLLexicon,
among which there are four consecutive letters that spell out ARML.

Problem 6. Let 10y be the product of all real numbers x such that log x =
3 +

⌊
(log x)2

⌋
4

. Compute y.

Problem 7. The solutions to the equation x2 − 180x+ 8 = 0 are r1 and r2. Compute

r1
3
√
r2

+
r2
3
√
r1

.

Problem 8. Circle ω is tangent to parallel lines ℓ1 and ℓ2 at A and B respectively. Circle ω1 is tangent to ℓ1 at
C and to ω externally at P . Circle ω2 is tangent to ℓ2 at D and to ω externally at Q. Circles ω1 and ω2 are
also externally tangent to each other. Given that AQ = 12 and DQ = 8, compute CD.

Problem 9. Given quadrilateral ARML with AR = 20, RM = 23, ML = 25, and AM = 32, compute the number
of different integers that could be the perimeter of ARML.

Problem 10. Let S denote the set of all real polynomials A(x) with leading coefficient 1 such that there exists a
real polynomial B(x) that satisfies

1

A(x)
+

1

B(x)
+

1

x+ 10
=

1

x

for all real numbers x for which A(x) ̸= 0, B(x) ̸= 0, and x ̸= −10, 0. Compute
∑
A∈S

A(10).

14 ARML encourages the reproduction of our contest problems for non-commercial, educational purposes.

Commercial usage of ARML problems without permission and posting entire contests or contest books are prohibited.



7 Individual Round Answers

Answer 1. 63

Answer 2. 60

Answer 3. 2302

Answer 4. 14
5 (or 245 or 2.8)

Answer 5. 99956

Answer 6. 8

Answer 7. 508

Answer 8. 5
√
10

Answer 9. 49

Answer 10. 46750
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8 Individual Round Solutions

Problem 1. Let N = 888,888× 9,999,999. Compute the sum of the digits of N .

Solution 1. Write N as

(10,000,000− 1) · 888,888
= 8,888,880,000,000− 888,888

= 8,888,879,111,112.

The sum of the digits of N is 63.

Problem 2. Five equilateral triangles are drawn in the plane so that no two sides of any of the triangles are
parallel. Compute the maximum number of points of intersection among all five triangles.

Solution 2. Any two of the triangles intersect in at most six points, because each side of one triangle can intersect
the other triangle in at most two points. To count the total number of intersections among the five triangles,
note that there are

(
5
2

)
= 10 ways to select a pair of triangles, and each pair may result in 6 intersections. Thus

10× 6 = 60 is an upper bound.

This can be achieved, for example, by taking six equilateral triangles of equal size, centered at a single point,
and rotating them different amounts so that no three sides intersect at a single point. Thus the answer is 60.

Problem 3. Let S be the set of four-digit positive integers for which the sum of the squares of their digits is 17.
For example, 2023 ∈ S because 22 + 02 + 22 + 32 = 17. Compute the median of S.

Solution 3. In order for the sums of the squares of four digits to be 17, the digits must be either 0, 2, 2, and
3, or 0, 0, 1, and 4, in some order. If the leading digit is 2, there are 3! = 6 possible four-digit numbers. If
the leading digit is 1, 3, or 4, there are 3!

2! = 3 possible four-digit numbers. In total, there are 6 + 3 · 3 = 15
four-digit integers in S, and the median will be the eighth least. The least eight integers in S, from least to
greatest, are: 1004, 1040, 1400, 2023, 2032, 2203, 2230, 2302. Thus the median of S is 2302.

Problem 4. Let EUCLID be a hexagon inscribed in a circle of radius 5. Given that EU = UC = LI = ID = 6,
and CL = DE, compute CL.

Solution 4. Let CL = x. Because the quadrilaterals EUCL and LIDE are congruent, EL is a diameter of the
circle in which the hexagon is inscribed, so EL = 10. Furthermore, because EL is a diameter of the circle, it
follows that the inscribed ∠EUL is a right angle, hence UL = 8.
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Using Ptolemy’s Theorem for cyclic quadrilaterals and the fact that △ECL is also a right triangle,

UC · EL+ EU · CL = EC · UL

=⇒ 6(10 + x) = 8
√
100− x2

=⇒ 36(10 + x)2 = 64(10 + x)(10− x)

=⇒ 6
√
10 + x = 8

√
10− x

=⇒ 36(10 + x) = 64(10− x)

=⇒ 360 + 36x = 640− 64x

=⇒ 100x = 280

=⇒ x =
14

5
.

Problem 5. The ARMLLexicon consists of 10 letters: {A,R,M ,L, e, x , i , c, o,n}. A palindrome is an ordered list
of letters that read the same backwards and forwards; for example, MALAM, n, oncecno, and MoM are palin-
dromes. Compute the number of 15-letter palindromes that can be spelled using letters in the ARMLLexicon,
among which there are four consecutive letters that spell out ARML.

Solution 5. Any 15-letter palindrome is determined completely by its first 8 letters, because the last 7 letters
must be the first 7 in reverse. Such a palindrome contains the string ARML if and only if its first 8 letters
contain either ARML or LMRA. (The string ARML cannot cross the middle of the palindrome, because the
7th and 9th letters must be the same.) It therefore suffices to count the number of 8-letter strings consiting of
letters in the ARMLLexicon that contain either ARML or LMRA.

There are 5 possible positions for ARML, and likewise with LMRA. For each choice of position, there are
four remaining letters, which can be any letter in the ARMLLexicon (here, W, X, Y, and Z are used to denote
arbitrary letters that need not be distinct). This leads to the following table:
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Word Num. Possibilities
ARMLWXYZ 104

WARMLXYZ 104

WXARMLYZ 104

WXYARMLZ 104

WXYZARML 104

LMRAWXYZ 104

WLMRAXYZ 104

WXLMRAYZ 104

WXYLMRAZ 104

WXYZLMRA 104

This gives 10 · 104 possible words, but each word with two of ARML or LMRA (e.g., ARMLARML or
AARMLMRA) is counted twice. There are four words with two of ARML or LMRA that use all 8 letters,
and four possible types of words that use 7 of the 8 positions and leave one “free space”. This leads to the
following table:

Word Num. Possibilities
ARMLARML 1
LMRALMRA 1
ARMLLMRA 1
LMRAARML 1
ARMLMRAW 10
LMRARMLW 10
WARMLMRA 10
WLMRARML 10

Thus the total number of desired words is 10 · 104 − 4 · 10− 4 · 1 = 99956.

Problem 6. Let 10y be the product of all real numbers x such that log x =
3 +

⌊
(log x)2

⌋
4

. Compute y.

Solution 6. First, note that

⌊
(log x)2

⌋
≤ (log x)2 =⇒

3 +
⌊
(log x)2

⌋
4

≤ 3 + (log x)2

4
.

Therefore

log x ≤ (log x)2 + 3

4
=⇒ 0 ≤ (log x)2 − 4 log x+ 3 = (log x− 1)(log x− 3).

This implies either log x ≤ 1 or log x ≥ 3, so 0 ≤ (log x)2 ≤ 1 or (log x)2 ≥ 9.

In the first case,
⌊
(log x)2

⌋
= 0 or

⌊
(log x)2

⌋
= 1, so log x = 3

4 or log x = 1, hence x = 103/4 or x = 10.

To solve the second case, note that
⌊
(log x)2

⌋
≥ (log x)2 − 1, so 0 ≥ (log x)2 − 4 log x + 2. The solutions

to t2 − 4t + 2 = 0 are t = 4±
√
16−8
2 = 2 ±

√
2 by the Quadratic Formula, so 2 −

√
2 ≤ log x ≤ 2 +

√
2. This

implies that 6 − 4
√
2 ≤ (log x)2 ≤ 6 + 4

√
2, so 0 ≤

⌊
(log x)2

⌋
≤ 11. However, this case is for (log x)2 ≥ 9, so

the only possibilities that need to be considered are 9 ≤
⌊
(log x)2

⌋
≤ 11.

� If
⌊
(log x)2

⌋
= 9, then log x = 3, so x = 103.

� If
⌊
(log x)2

⌋
= 10, then log x = 13

4 , so x = 1013/4.

� Finally, if
⌊
(log x)2

⌋
= 11, then log x = 7

2 , which yields (log x)2 = 49
4 > 12, so there are no solutions.

Thus the product of all possible values of x is y = 103/4 · 10 · 1013/4 · 103 = 108, so y = 8.

18 ARML encourages the reproduction of our contest problems for non-commercial, educational purposes.

Commercial usage of ARML problems without permission and posting entire contests or contest books are prohibited.



Problem 7. The solutions to the equation x2 − 180x+ 8 = 0 are r1 and r2. Compute

r1
3
√
r2

+
r2
3
√
r1

.

Solution 7. First note that the solutions of the given equation are real because the equation’s discriminant is
positive. By Vieta’s Formulas, r1 + r2 = 180 (∗) and r1r2 = 8 (∗∗). The expression to be computed can be
written with a common denominator as

3
√

r41 +
3
√
r42

3
√
r1r2

.

By (∗∗), the denominator is equal to 3
√
8 = 2. To compute the numerator, first let Sk = 3

»
rk1 + 3

»
rk2 , so that

the numerator is S4. Then note that

(S1)
3
= r1 + 3 3

√
r21r2 + 3 3

√
r22r1 + r2

= (r1 + r2) + 3 3
√
r1r2

(
3
√
r1 + 3

√
r2
)

= 180 + 3 · 2 · S1, (†)

where (∗) and (∗∗) are used to substitute values into the second equality. Next note that S3
1 − 6S1 − 180

can be factored as (S1 − 6)(S2
1 + 6S1 + 30). Because the polynomial t2 + 6t + 30 has no real roots, the

unique real solution to (†) is S1 = 6, so 3
√
r1 + 3

√
r2 = 6. Square each side of the previous equation to obtain

S2 + 2 3
√
r1r2 = 36, hence S2 = 36− 2 · 2; that is, 3

√
r21 +

3
√
r22 = 32. Again, square both sides of this equation

to obtain 3
√
r41 + 2 3

√
r21r

2
2 +

3
√
r42 = 1024, so S4 + 2 3

√
r21r

2
2 = 1024, from which S4 = 1024− 2 · 4 = 1016. Thus

the desired expression equals
S4

2
=

1016

2
= 508.

Problem 8. Circle ω is tangent to parallel lines ℓ1 and ℓ2 at A and B respectively. Circle ω1 is tangent to ℓ1 at
C and to ω externally at P . Circle ω2 is tangent to ℓ2 at D and to ω externally at Q. Circles ω1 and ω2 are
also externally tangent to each other. Given that AQ = 12 and DQ = 8, compute CD.

Solution 8. Let O, O1 and O2 be the centers, and let r, r1 and r2 be the radii of the circles ω, ω1, and ω2,
respectively. Let R be the point of tangency between ω1 and ω2.

Let H1 and H2 be the projections of O1 and O2 onto AB. Also, let H be the projection of O1 onto O2H2. Note
that OH1 = r − r1, OH2 = r − r2, OO1 = r + r1, OO2 = r + r2, and O1O2 = r1 + r2. From the Pythagorean
Theorem, it follows that O1H1 = 2

√
rr1 and O2H2 = 2

√
rr2. Similarly, applying the Pythagorean Theorem to

triangle O1HO2 yields (O1H)2 + (O2H)2 = (O1O2)
2, which is equivalent to(

2
√
rr2 − 2

√
rr1

)2
+ (2r − r1 − r2)

2 = (r1 + r2)
2,

which yields r2 = 4r1r2 after simplifying.

A

B

C

D

R

O

O1

O2

H1

H2 H

A

B

C

D

P

Q

R

O

O1

O2
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Note that AO ∥ O2D, hence ∠AOQ ∼= ∠DO2Q, which implies that isosceles triangles AOQ and DO2Q are
similar. Thus ∠AQO ∼= ∠DQO2 and therefore points A, Q, and D are collinear. Analogously, it follows that
the points B, P , and C are collinear, as are the points C, R, and D.

In right triangle ABD, BQ is the altitude to AD. By similarity of triangles, it follows that DQ ·DA = BD2

and AQ · AD = AB2. Hence BD = 4
√
10, AB = 4

√
15, and r = 2

√
15. Because DO2

AO = DQ
AQ = 2

3 , it follows

that r2 = 4
3

√
15 and r1 = 3

4

√
15.

Note that AC = 2
√
rr1 = 3

√
10, BD = 2

√
rr2 = 4

√
10, and

CD2 = AB2 + (BD −AC)
2
=

(
4
√
15

)2
+

(
4
√
10− 3

√
10

)2
= 240 + 10 = 250,

which implies that CD = 5
√
10.

Alternate Solution: Conclude that r2 = 4r1r2, as explained above. Note that ∠CAQ ∼= ∠QDB ∼= ∠QRD,
using the fact that the two given lines are parallel and ω2 is tangent one of them at D. Quadrilateral CAQR
is cyclic, so apply Power of a Point to obtain DQ · DA = DR · DC. Because r2

r = QD
QA = 2

3 , conclude that

r2 = 2x, r = 3x, and hence r1 = 9
8x. It follows that

DR
CR = r2

r1
= 16

9 and DR = 16
25 · CD. Thus

DR ·DC =
16

25
· CD2 = DQ ·DA = 8 · 20,

hence CD = 5
√
10.

Problem 9. Given quadrilateral ARML with AR = 20, RM = 23, ML = 25, and AM = 32, compute the number
of different integers that could be the perimeter of ARML.

Solution 9. Notice that △ARM is fixed, so the number of integers that could be the perimeter of ARML is
the same as the number of integers that could be the length AL in △ALM . By the Triangle Inequality,
32− 25 < AL < 32 + 25, so AL is at least 8 and no greater than 56. The number of possible integer values for
AL is 56− 8 + 1 = 49.

Problem 10. Let S denote the set of all real polynomials A(x) with leading coefficient 1 such that there exists a
real polynomial B(x) that satisfies

1

A(x)
+

1

B(x)
+

1

x+ 10
=

1

x

for all real numbers x for which A(x) ̸= 0, B(x) ̸= 0, and x ̸= −10, 0. Compute
∑
A∈S

A(10).

Solution 10. For brevity, P will be used to represent the polynomial P (x), and let deg(P ) represent the degree
of P . Rewrite the given condition as follows:

1

A(x)
+

1

B(x)
+

1

x+ 10
=

1

x
=⇒ A+B

AB
=

10

x(x+ 10)

=⇒ AB − x(x+ 10)

10
A− x(x+ 10)

10
B = 0

=⇒
Å
A− x(x+ 10)

10

ãÅ
B − x(x+ 10)

10

ã
=

x2(x+ 10)2

100
.

Because A and B are both polynomials, A − x(x+10)
10 must be some factor F of x2(x+10)2

100 . Furthermore, if
deg(F ) ≤ 1 then A has leading coefficient 1

10 , which is a contradiction. So deg(F ) ≥ 2. Thus F must be a
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nonzero constant times one of

{x2, x(x+ 10), (x+ 10)2, x2(x+ 10), x(x+ 10)2, x2(x+ 10)2}.

Because A has leading coefficient 1, it follows that the constant must be 1 if deg(F ) ≥ 3 and 9
10 if deg(F ) = 2,

and thus F is one ofß
9

10
x2,

9

10
x(x+ 10),

9

10
(x+ 10)2, x2(x+ 10), x(x+ 10)2, x2(x+ 10)2

™
.

Then ∑
A(10)− 10 · 20

10
=

9

10
·
(
102 + 10 · 20 + 202

)
+

(
102 · 20 + 10 · 202 + 102 · 202

)
= 46630,

so
∑

A(10) = 6 · 10·2010 + 46630 = 46750, as desired.
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9 Relay Round

Problem 1-1. Square ABCD has side length 22. Points G and H lie on AB so that AH = BG = 5. Points E and
F lie outside square ABCD so that EFGH is a square. Compute the area of hexagon AEFBCD.

Problem 1-2. Let T be the number you will receive. Let a be the least nonzero digit in T , and let b be the greatest
digit in T . In square NORM , NO = b, and points P1 and P2 lie on NO and OR, respectively, so that

OP1 = OP2 = a. A circle centered at O has radius a, and quarter-circular arc
>

P1P2 is drawn. There is a

circle that is tangent to
>

P1P2 and to sides MN and MR. The radius of this circle can be written in the form
x− y

√
2, where x and y are positive integers. Compute x+ y.

Problem 1-3. Let T be the number you will receive. Square ABCD has area T . Points M , N , O, and P lie on AB,
BC, CD, and DA, respectively, so that quadrilateral MNOP is a rectangle with MP = 2. Compute MN .

Problem 2-1. In a game, a player chooses 2 of the 13 letters from the first half of the alphabet (i.e., A–M) and 2 of
the 13 letters from the second half of the alphabet (i.e., N–Z). Aditya plays the game, and then Ayesha plays
the game. Compute the probability that Aditya and Ayesha choose the same set of four letters.

Problem 2-2. Let T be the number you will receive. Compute the least positive integer n such that when a fair
coin is flipped n times, the probability of it landing heads on all n flips is less than T .

Problem 2-3. Let T be the number you will receive. Compute the least integer n > 2023 such that the equation
x2 − Tx− n = 0 has integer solutions.
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10 Relay Round Answers

Answer 1-1. 688

Answer 1-2. 36

Answer 1-3. 6
√
2− 2

Answer 2-1.
1

6084

Answer 2-2. 13

Answer 2-3. 2028
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11 Relay Round Solutions

Problem 1-1. Square ABCD has side length 22. Points G and H lie on AB so that AH = BG = 5. Points E and
F lie outside square ABCD so that EFGH is a square. Compute the area of hexagon AEFBCD.

Solution 1-1. Note that GH = AB −AH −BG = 22− 5− 5 = 12. Thus

[AEFBCD] = [ABCD] + [EFGH] + [AEH] + [BFG]

= 222 + 122 + 1
2 · 5 · 12 +

1
2 · 5 · 12

= 484 + 144 + 30 + 30

= 688.

Problem 1-2. Let T be the number you will receive. Let a be the least nonzero digit in T , and let b be the greatest
digit in T . In square NORM , NO = b, and points P1 and P2 lie on NO and OR, respectively, so that

OP1 = OP2 = a. A circle centered at O has radius a, and quarter-circular arc
>

P1P2 is drawn. There is a

circle that is tangent to
>

P1P2 and to sides MN and MR. The radius of this circle can be written in the form
x− y

√
2, where x and y are positive integers. Compute x+ y.

Solution 1-2. Let r and Q denote the respective radius and center of the circle whose radius is concerned. Let this

circle be tangent to arc
>

P1P2 at point P , and let it be tangent to sides MN and MR at points T1 and T2,
respectively.

Note that Q lies on diagonal MO because it is equidistant to MN and MR. Points Q, P , and O must be
collinear because the circles centered at Q and O are mutually tangent at point P . It therefore follows that
P also lies on diagonal MO. Because triangles QT1M and QT2M are isosceles right triangles, it follows that
MQ = r

√
2. Thus

b
√
2 = MO = MQ+QP + PO = r

√
2 + r + a.

Solving this equation yields r = a+ 2b− (a+ b)
√
2. With T = 688, a = 6 and b = 8, so r = 22− 14

√
2, hence

x+ y = 22 + 14 = 36.
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Problem 1-3. Let T be the number you will receive. Square ABCD has area T . Points M , N , O, and P lie on AB,
BC, CD, and DA, respectively, so that quadrilateral MNOP is a rectangle with MP = 2. Compute MN .

Solution 1-3. Let AM = a and AP = b, and let s =
√
T be the side length of square ABCD. Then MB = s − a

and DP = s− b. Using the right angles of MNOP and complementary acute angles in triangles AMP , BNM ,
CON , and DPO, note that

∠AMP ∼= ∠BNM ∼= ∠CON ∼= DPO.

Also note that m∠BMN = 180◦ − (90◦ +m∠AMP ), so it also follows that

∠BMN ∼= ∠CNO ∼= ∠DOP ∼= APM.

Thus, by side-angle-side congruence, it follows that △AMP ∼= △CON and △BNM ∼= △DPO. Moreover, by
side-angle-side similarity, it follows that △AMP ∼ △BNM ∼ △CON ∼ △DPO. Thus BN = s− b, NC = b,
CO = a, and OD = s − a. The similarity relation implies AM

BN = AP
BM , so a

s−b = b
s−a . Cross-multiplying,

rearranging, and simplifying yields s(a − b) = (a + b)(a − b). Thus either a = b or s = a + b. In the case
where a = b, AM = AP = 2√

2
=
√
2, so MN = (s −

√
2)
√
2 = s

√
2 − 2. With T = 36, s = 6, and the

answer is thus 6
√
2 − 2. For completeness, it remains to verify that for this particular value of s, the case

where s = a + b is impossible. Applying the Pythagorean Theorem in △MAP yields a2 + b2 = 4. Now if
s = 6 = a+ b, then by squaring, it would follow that a2 + b2 +2ab = 36 =⇒ 4+ 2ab = 36 =⇒ ab = 16. But the
equation a+ b = a+ 16

a = 6 has no real solutions, thus a+ b ̸= 6. (Alternatively, note that by the Arithmetic

Mean-Geometric Mean Inequality, a+ 16
a ≥ 2

»
a · 16a = 8 > 6.)

Problem 2-1. In a game, a player chooses 2 of the 13 letters from the first half of the alphabet (i.e., A–M) and 2 of
the 13 letters from the second half of the alphabet (i.e., N–Z). Aditya plays the game, and then Ayesha plays
the game. Compute the probability that Aditya and Ayesha choose the same set of four letters.

Solution 2-1. The number of ways to choose 2 distinct letters out of 13 is 13·12
2 = 78. The probability of matching

on both halves is therefore 1
782 = 1

6084 .

Problem 2-2. Let T be the number you will receive. Compute the least positive integer n such that when a fair
coin is flipped n times, the probability of it landing heads on all n flips is less than T .

Solution 2-2. The problem is equivalent to finding the least integer n such that 1
2n < T , or 2n > 1

T = 6084. Because
212 = 4096 and 213 = 8192, the answer is 13.

Problem 2-3. Let T be the number you will receive. Compute the least integer n > 2023 such that the equation
x2 − Tx− n = 0 has integer solutions.

Solution 2-3. The discriminant of the quadratic, T 2+4n, must be a perfect square. Because T and the discriminant
have the same parity, and the leading coefficient of the quadratic is 1, by the quadratic formula, the discriminant
being a perfect square is sufficient to guarantee integer solutions. Before knowing T , note that

√
4 · 2024 =√

8096 is slightly less than 90 because 902 = 8100, and the square root must have the same parity as T . Because
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T = 13, the square root must be greater than
√
132 + 4 · 2023 =

√
8261, which is between 90 and 91, so the

desired square root is 91. Hence 132 + 4n = 912, so n = 2028.
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12 Super Relay

1. Compute the least integer greater than 2023, the sum of whose digits is 17.

2. Let T = TNYWR, and let K be the sum of the digits of T . Let r and s be the two roots of the polynomial
x2 − 18x+K. Compute |r − s|.

3. Let T = TNYWR. Two coplanar squares S1 and S2 each have area T
and are arranged as shown to form a nonconvex octagon. The center
of S1 is a vertex of S2, and the center of S2 is a vertex of S1.

Compute
area of the union of S1 and S2

area of the intersection of S1 and S2
.

4. Let T = TNYWR, and let K = 9T . Let A1 = 2, and for n ≥ 2, let

An =

ß
An−1 + 1 if n is not a perfect square,√
n if n is a perfect square.

Compute AK .

5. Let T = TNYWR. The number 20T · 23T has K positive divisors. Compute the greatest prime factor of K.

6. Let T = TNYWR. Compute the positive integer n ̸= 17 for which

Ç
T − 3

17

å
=

Ç
T − 3

n

å
.

7. Let T = TNYWR. Compute the units digit of T 2023 + T 20 − T 23.

15. In acute triangle ILK, shown in the figure, point G lies on LK
so that IG ⊥ LK. Given that IL =

√
41 and LG = IK = 5,

compute GK.

14. Let T = TNYWR. Suppose that T fair coins are flipped. Compute the probability that at least one tails is
flipped.

13. Let T = TNYWR. The number T can be expressed as a reduced fraction m
n , where m and n are positive

integers whose greatest common divisor is 1. The equation x2 + (m + n)x + mn = 0 has two distinct real
solutions. Compute the lesser of these two solutions.

12. Let T = TNYWR, and let i =
√
−1. Compute the positive integer k for which (−1 + i)k =

1

2T
.

11. Let T = TNYWR. Compute the value of x that satisfies log4 T = log2 x.

10. Let T = TNYWR. Pyramid LEOJS is a right square pyramid with base EOJS, whose area is T . Given that
LE = 5

√
2, compute [LEO].

9. Let T = TNYWR. Compute the units digit of T 2023 + (T − 2)20 − (T + 10)23.

8. Let r and R be the lesser and greater numbers, respectively, of the two numbers you will receive. A circle with
radius r is centered at A, and a circle with radius R is centered at B. The two circles are internally tangent.
Point P lies on the smaller circle so that BP is tangent to the smaller circle. Compute BP .
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13 Super Relay Answers

1. 2069

2. 16

3. 7

4. 21

5. 43

6. 23

7. 1

15. 3

14. 7
8

13. −8
12. 16

11. 4

10. 7

9. 5

8.
√
15
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14 Super Relay Solutions

Problem 1. Compute the least integer greater than 2023, the sum of whose digits is 17.

Solution 1. A candidate for desired number is 2 0X Y , where X and Y are digits and X + Y = 15. To minimize
this number, take Y = 9. Then X = 6, and the desired number is 2069.

Problem 2. Let T = TNYWR, and let K be the sum of the digits of T . Let r and s be the two roots of the
polynomial x2 − 18x+K. Compute |r − s|.

Solution 2. Note that |r − s| =
√
r2 − 2rs+ s2 =

√
(r + s)2 − 4rs. By Vieta’s Formulas, r + s = −(−18) and

rs = K, so |r − s| =
√
182 − 4K. With T = 2069, K = 17, and the answer is

√
324− 68 =

√
256 = 16.

Problem 3. Let T = TNYWR. Two coplanar squares S1 and S2 each have area T
and are arranged as shown to form a nonconvex octagon. The center
of S1 is a vertex of S2, and the center of S2 is a vertex of S1.

Compute
area of the union of S1 and S2

area of the intersection of S1 and S2
.

Solution 3. Let 2x be the side length of the squares. Then the intersection of S1 and S2 is a square of side length
x, so its area is x2. The area of the union of S1 and S2 is (2x)2 + (2x)2 − x2 = 7x2. Thus the desired ratio of

areas is 7x2

x2 = 7 (independent of T ).

Problem 4. Let T = TNYWR, and let K = 9T . Let A1 = 2, and for n ≥ 2, let

An =

ß
An−1 + 1 if n is not a perfect square,√
n if n is a perfect square.

Compute AK .

Solution 4. Let
⌊√

n
⌋
= x. Then n can be written as x2 + y, where y is an integer such that 0 ≤ y < 2x+ 1. Let

m be the greatest perfect square less than or equal to 9T . Then the definition of the sequence and the previous

observation imply that AK = A9T =
√
m+ (9T −m) =

⌊√
9T

⌋
+
Ä
9T −

⌊√
9T

⌋2ä
. With T = 7, K = 9T = 63,⌊√

9T
⌋
= 7, and the answer is therefore 7 + (63− 72) = 21.

Problem 5. Let T = TNYWR. The number 20T ·23T has K positive divisors. Compute the greatest prime factor
of K.

Solution 5. Write 20T · 23T as 22T · 5T · 23T . This number has K = (2T + 1)(T + 1)2 positive divisors. With
T = 21, K = 43 · 222. The greatest prime factor of K is 43.

Problem 6. Let T = TNYWR. Compute the positive integer n ̸= 17 for which

Ç
T − 3

17

å
=

Ç
T − 3

n

å
.

Solution 6. Using the symmetry property of binomial coefficients, the desired value of n is T − 3− 17 = T − 20.
With T = 43, the answer is 23.
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Problem 7. Let T = TNYWR. Compute the units digit of T 2023 + T 20 − T 23.

Solution 7. Assuming that T is a positive integer, because units digits of powers of T cycle in groups of at most
4, the numbers T 2023 and T 23 have the same units digit, hence the number T 2023 − T 23 has a units digit of 0,
and the answer is thus the units digit of T 20. With T = 23, the units digit of 2320 is the same as the units
digit of 320, which is the same as the units digit of 34 = 81, so the answer is 1.

Problem 15. In acute triangle ILK, shown in the figure, point G lies on LK
so that IG ⊥ LK. Given that IL =

√
41 and LG = IK = 5,

compute GK.

Solution 15. Using the Pythagorean Theorem, IG =
√

(IL)2 − (LG)2 =
√
41− 25 = 4, andGK =

√
(IK)2 − (IG)2 =√

25− 16 = 3.

Problem 14. Let T = TNYWR. Suppose that T fair coins are flipped. Compute the probability that at least
one tails is flipped.

Solution 14. The probability of flipping all heads is ( 12 )
T , so the probability of flipping at least one tails is 1− 1

2T
.

With T = 3, the desired probability is 1− 1
8 = 7

8 .

Problem 13. Let T = TNYWR. The number T can be expressed as a reduced fraction m
n , where m and n are

positive integers whose greatest common divisor is 1. The equation x2 + (m+ n)x+mn = 0 has two distinct
real solutions. Compute the lesser of these two solutions.

Solution 13. The left-hand side of the given equation can be factored as (x +m)(x + n). The two solutions are
therefore −m and −n, so the answer is min{−m,−n}. With T = 7

8 , m = 7, n = 8, and min{−7,−8} is −8.

Problem 12. Let T = TNYWR, and let i =
√
−1. Compute the positive integer k for which (−1 + i)k =

1

2T
.

Solution 12. Note that (−1+i)2 = 1+2i−1 = 2i. Thus (−1+i)4 = (2i)2 = −4, and (−1+i)8 = (−4)2 = 16. The

expression 1
2T

is a power of 16 if T is a negative multiple of 4. With T = −8, 1
2−8 = 28 = 162 =

(
(−1 + i)8

)2
=

(−1 + i)16, so the desired value of k is 16.

Problem 11. Let T = TNYWR. Compute the value of x that satisfies log4 T = log2 x.

Solution 11. By the change of base rule and a property of logs, log4 T = log2 T
log2 4 = log2 T

2 = log2
√
T . Thus x =

√
T ,

and with T = 16, x = 4.

Problem 10. Let T = TNYWR. Pyramid LEOJS is a right square pyramid with base EOJS, whose area is T .
Given that LE = 5

√
2, compute [LEO].

Solution 10. Let the side length of square base EOJS be 2x, and let M be the midpoint of EO. Then

LM ⊥ EO, and LM =

…Ä
5
√
2
ä2
− x2 by the Pythagorean Theorem. Thus [LEO] = 1

2 · 2x
…Ä

5
√
2
ä2
− x2 =
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x

…Ä
5
√
2
ä2
− x2. With T = 4, x = 1, and the answer is 1 ·

√
50− 1 = 7.

Problem 9. Let T = TNYWR. Compute the units digit of T 2023 + (T − 2)20 − (T + 10)23.

Solution 9. Note that T and T +10 have the same units digit. Because units digits of powers of T cycle in groups
of at most 4, the numbers T 2023 and (T +10)23 have the same units digit, hence the number T 2023− (T +10)23

has a units digit of 0, and the answer is thus the units digit of (T − 2)20. With T = 7, the units digit of 520

is 5.

Problem 8. Let r and R be the lesser and greater numbers, respectively, of the two numbers you will receive. A
circle with radius r is centered at A, and a circle with radius R is centered at B. The two circles are internally
tangent. Point P lies on the smaller circle so that BP is tangent to the smaller circle. Compute BP .

Solution 8. Draw radius AP and note that APB is a right triangle with m∠APB = 90◦. Note that AB = R− r
and AP = r, so by the Pythagorean Theorem, BP =

√
(R− r)2 − r2 =

√
R2 − 2Rr. With r = 1 and R = 5,

it follows that BP =
√
15.
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15 Tiebreaker Round

Problem 1. For an integer n ≥ 4, define an to be the product of all real numbers that are roots to at least one
quadratic polynomial whose coefficients are positive integers that sum to n. Compute

a4
a5

+
a5
a6

+
a6
a7

+ · · ·+ a2022
a2023

.

Problem 2. Suppose that u and v are distinct numbers chosen at random from the set {1, 2, 3, . . . , 30}. Compute
the probability that the roots of the polynomial (x+ u)(x+ v) + 4 are integers.

Problem 3. The degree-measures of the interior angles of convex hexagon TIEBRK are all integers in arithmetic
progression. Compute the least possible degree-measure of the smallest interior angle in hexagon TIEBRK.
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16 Tiebreaker Round Answers

Answer 1. −2019

Answer 2.
17

145

Answer 3. 65 (or 65◦)
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17 Tiebreaker Round Solutions

Problem 1. For an integer n ≥ 4, define an to be the product of all real numbers that are roots to at least one
quadratic polynomial whose coefficients are positive integers that sum to n. Compute

a4
a5

+
a5
a6

+
a6
a7

+ · · ·+ a2022
a2023

.

Solution 1. For an integer n ≥ 4, let Sn denote the set of real numbers x that are roots to at least one quadratic
polynomial whose coefficients are positive integers that sum to n. (Note that Sn is nonempty, as the polynomial

x2 + (n− 2)x+ 1 has a discriminant of (n− 2)2 − 4, which is nonnegative for n ≥ 4.) Then an =
∏
x∈Sn

x.

Suppose that a, b, and c are positive integers and x is a real solution to ax2 + bx + c = 0. Then x must be
nonzero. (In fact, x must be negative.) Dividing the above equation by x2 yields a+ b

x + c
x2 = 0, thus r = 1

x
is a solution to the quadratic equation cr2 + br + a = 0. This shows that x ∈ Sn if and only if 1

x ∈ Sn.

One might then think that an must equal 1, because one can presumably pair up all elements in a given Sn

into
{
x, 1

x

}
pairs. But there is a (negative) value of x for which x = 1

x , namely x = −1. Therefore the value
of an depends only on whether −1 ∈ Sn. It is readily seen via a parity argument that −1 ∈ Sn if and only
if n is even. If n = 2k, then the polynomial x2 + kx + (k − 1) has −1 as a root. (In fact, any quadratic
polynomial whose middle coefficient is k and whose coefficients sum to 2k will work.) But if n = 2k + 1, then
a(−1)2 + b(−1) + c = a− b+ c = (a+ b+ c)− 2b = (2k + 1)− 2b will be odd, and so −1 /∈ Sn.

Thus an = −1 when n is even, an = 1 when n is odd, and finally,

a4
a5

+
a5
a6

+
a6
a7

+ · · ·+ a2022
a2023

= (−1) + (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
2019 (−1)s

= −2019.

Problem 2. Suppose that u and v are distinct numbers chosen at random from the set {1, 2, 3, . . . , 30}. Compute
the probability that the roots of the polynomial (x+ u)(x+ v) + 4 are integers.

Solution 2. Assume without loss of generality that u > v. The condition that (x+u)(x+ v)+ 4 has integer roots
is equivalent to the discriminant (u+ v)2 − 4(uv + 4) = (u− v)2 − 16 being a perfect square. This is possible
if and only if u− v = 4 or u− v = 5. There are (30− 4) + (30− 5) = 26+ 25 = 51 such ordered pairs (u, v), so
the answer is

51(
30
2

) =
17

145
.

Problem 3. The degree-measures of the interior angles of convex hexagon TIEBRK are all integers in arithmetic
progression. Compute the least possible degree-measure of the smallest interior angle in hexagon TIEBRK.

Solution 3. The sum of the measures of the interior angles of a convex hexagon is (6− 2)(180◦) = 720◦. Let the
measures of the angles be a, a+d, . . . , a+5d. This implies that 6a+15d = 720→ 2a+5d = 240→ 5d = 240−2a.
Note that a+ 5d < 180→ 240− a < 180→ a > 60. By inspection, note that the least a greater than 60 that
produces an integer d is a = 65→ d = 22. Thus the least possible degree-measure of the smallest angle is 65◦,
and the hexagon has angles with degree-measures 65◦, 87◦, 109◦, 131◦, 153◦, and 175◦.

34 ARML encourages the reproduction of our contest problems for non-commercial, educational purposes.

Commercial usage of ARML problems without permission and posting entire contests or contest books are prohibited.


